Wordpress的编辑器对大文本的支持也太差了,,,放这备份
jls的计算几何板子
#define mp make_pair
#define fi first
#define se second
#define pb push_back
typedef double db;
const db eps=1e-6;
const db pi=acos(-1);
int sign(db k){
if (k>eps) return 1; else if (k<-eps) return -1; return 0;
}
int cmp(db k1,db k2){
return sign(k1-k2);}
int inmid(db k1,db k2,db k3){
return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内
struct point{
db x,y;
point operator + (const point &k1) const{
return (point){
k1.x+x,k1.y+y};}
point operator - (const point &k1) const{
return (point){
x-k1.x,y-k1.y};}
point operator * (db k1) const{
return (point){
x*k1,y*k1};}
point operator / (db k1) const{
return (point){
x/k1,y/k1};}
int operator == (const point &k1) const{
return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;}
// 逆时针旋转
point turn(db k1){
return (point){
x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};}
point turn90(){
return (point){
-y,x};}
bool operator < (const point k1) const{
int a=cmp(x,k1.x);
if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1;
}
db abs(){
return sqrt(x*x+y*y);}
db abs2(){
return x*x+y*y;}
db dis(point k1){
return ((*this)-k1).abs();}
point unit(){
db w=abs(); return (point){
x/w,y/w};}
void scan(){
double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;}
void print(){
printf("%.11lf %.11lf\n",x,y);}
db getw(){
return atan2(y,x);}
point getdel(){
if (sign(x)==-1||(sign(x)==0&&sign(y)==-1)) return (*this)*(-1); else return (*this);}
int getP() const{
return sign(y)==1||(sign(y)==0&&sign(x)==-1);}
};
int inmid(point k1,point k2,point k3){
return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);}
db cross(point k1,point k2){
return k1.x*k2.y-k1.y*k2.x;}
db dot(point k1,point k2){
return k1.x*k2.x+k1.y*k2.y;}
db rad(point k1,point k2){
return atan2(cross(k1,k2),dot(k1,k2));}
// -pi -> pi
int compareangle (point k1,point k2){
return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>0);
}
point proj(point k1,point k2,point q){
// q 到直线 k1,k2 的投影
point k=k2-k1; return k1+k*(dot(q-k1,k)/k.abs2());
}
point reflect(point k1,point k2,point q){
return proj(k1,k2,q)*2-q;}
int clockwise(point k1,point k2,point k3){
// k1 k2 k3 逆时针 1 顺时针 -1 否则 0
return sign(cross(k2-k1,k3-k1));
}
int checkLL(point k1,point k2,point k3,point k4){
// 求直线 (L) 线段 (S)k1,k2 和 k3,k4 的交点
return cmp(cross(k3-k1,k4-k1),cross(k3-k2,k4-k2))!=0;
}
point getLL(point k1,point k2,point k3,point k4){
db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3); return (k1*w2+k2*w1)/(w1+w2);
}
int intersect(db l1,db r1,db l2,db r2){
if (l1>r1) swap(l1,r1); if (l2>r2) swap(l2,r2); return cmp(r1,l2)!=-1&&cmp(r2,l1)!=-1;
}
int checkSS(point k1,point k2,point k3,point k4){
return intersect(k1.x,k2.x,k3.x,k4.x)&&intersect(k1.y,k2.y,k3.y,k4.y)&&
sign(cross(k3-k1,k4-k1))*sign(cross(k3-k2,k4-k2))<=0&&
sign(cross(k1-k3,k2-k3))*sign(cross(k1-k4,k2-k4))<=0;
}
db disSP(point k1,point k2,point q){
point k3=proj(k1,k2,q);
if (inmid(k1,k2,k3)) return q.dis(k3); else return min(q.dis(k1),q.dis(k2));
}
db disSS(point k1,point k2,point k3,point k4){
if (checkSS(k1,k2,k3,k4)) return 0;
else return min(min(disSP(k1,k2,k3),disSP(k1,k2,k4)),min(disSP(k3,k4,k1),disSP(k3,k4,k2)));
}
int onS(point k1,point k2,point q){
return inmid(k1,k2,q)&&sign(cross(k1-q,k2-k1))==0;}
struct circle{
point o; db r;
void scan(){
o.scan(); scanf("%lf",&r);}
int inside(point k){
return cmp(r,o.dis(k));}
};
struct line{
// p[0]->p[1]
point p[2];
line(point k1,point k2){
p[0]=k1; p[1]=k2;}
point& operator [] (int k){
return p[k];}
int include(point k){
return sign(cross(p[1]-p[0],k-p[0]))>0;}
point dir(){
return p[1]-p[0];}
line push(){
// 向外 ( 左手边 ) 平移 eps
const db eps = 1e-6;
point delta=(p[1]-p[0]).turn90().unit()*eps;
return {
p[0]-delta,p[1]-delta};
}
};
point getLL(line k1,line k2){
return getLL(k1[0],k1[1],k2[0],k2[1]);}
int parallel(line k1,line k2){
return sign(cross(k1.dir(),k2.dir()))==0;}
int sameDir(line k1,line k2){
return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==1;}
int operator < (line k1,line k2){
if (sameDir(k1,k2)) return k2.include(k1[0]);
return compareangle(k1.dir(),k2.dir());
}
int checkpos(line k1,line k2,line k3){
return k3.include(getLL(k1,k2));}
vector<line> getHL(vector<line> &L){
// 求半平面交 , 半平面是逆时针方向 , 输出按照逆时针
sort(L.begin(),L.end()); deque<line> q;
for (int i=0;i<(int)L.size();i++){
if (i&&sameDir(L[i],L[i-1])) continue;
while (q.size()>1&&!checkpos(q[q.size()-2],q[q.size()-1],L[i])) q.pop_back();
while (q.size()>1&&!checkpos(q[1],q[0],L[i])) q.pop_front();
q.push_back(L[i]);
}
while (q.size()>2&&!checkpos(q[q.size()-2],q[q.size()-1],q[0])) q.pop_back();
while (q.size()>2&&!checkpos(q[1],q[0],q[q.size()-1])) q.pop_front();
vector<line>ans; for (int i=0;i<q.size();i++) ans.push_back(q[i]);
return ans;
}
db closepoint(vector<point>&A,int l,int r){
// 最近点对 , 先要按照 x 坐标排序
if (r-l<=5){
db ans=1e20;
for (int i=l;i<=r;i++) for (int j=i+1;j<=r;j++) ans=min(ans,A[i].dis(A[j]));
return ans;
}
int mid=l+r>>1; db ans=min(closepoint(A,l,mid),closepoint(A,mid+1,r));
vector<point>B; for (int i=l;i<=r;i++) if (abs(A[i].x-A[mid].x)<=ans) B.push_back(A[i]);
sort(B.begin(),B.end(),[](point k1,point k2){
return k1.y<k2.y;});
for (int i=0;i<B.size();i++) for (int j=i+1;j<B.size()&&B[j].y-B[i].y<ans;j++) ans=min(ans,B[i].dis(B[j]));
return ans;
}
int checkposCC(circle k1,circle k2){
// 返回两个圆的公切线数量
if (cmp(k1.r,k2.r)==-1) swap(k1,k2);
db dis=k1.o.dis(k2.o); int w1=cmp(dis,k1.r+k2.r),w2=cmp(dis,k1.r-k2.r);
if (w1>0) return 4; else if (w1==0) return 3; else if (w2>0) return 2;
else if (w2==0) return 1; else return 0;
}
vector<point> getCL(circle k1,point k2,point k3){
// 沿着 k2->k3 方向给出 , 相切给出两个
point k=proj(k2,k3,k1.o); db d=k1.r*k1.r-(k-k1.o).abs2();
if (sign(d)==-1) return {
};
point del=(k3-k2).unit()*sqrt(max((db)0.0,d)); return {
k-del,k+del};
}
vector<point> getCC(circle k1,circle k2){
// 沿圆 k1 逆时针给出 , 相切给出两个
int pd=checkposCC(k1,k2); if (pd==0||pd==4) return {
};
db a=(k2.o-k1.o).abs2(),cosA=(k1.r*k1.r+a-k2.r*k2.r)/(2*k1.r*sqrt(max(a,(db)0.0)));
db b=k1.r*cosA,c=sqrt(max((db)0.0,k1.r*k1.r-b*b));
point k=(k2.o-k1.o).unit(),m=k1.o+k*b,del=k.turn90()*c;
return {
m-del,m+del};
}
vector<point> TangentCP(circle k1,point k2){
// 沿圆 k1 逆时针给出
db a=(k2-k1.o).abs(),b=k1.r*k1.r/a,c=sqrt(max((db)0.0,k1.r*k1.r-b*b));
point k=(k2-k1.o).unit(),m=k1.o+k*b,del=k.turn90()*c;
return {
m-del,m+del};
}
vector<line> TangentoutCC(circle k1,circle k2){
int pd=checkposCC(k1,k2); if (pd==0) return {
};
if (pd==1){
point k=getCC(k1,k2)[0]; return {
(line){
k,k}};}
if (cmp(k1.r,k2.r)==0){
point del=(k2.o-k1.o).unit().turn90().getdel();
return {
(line){
k1.o-del*k1.r,k2.o-del*k2.r},(line){
k1.o+del*k1.r,k2.o+del*k2.r}};
} else {
point p=(k2.o*k1.r-k1.o*k2.r)/(k1.r-k2.r);
vector<point>A=TangentCP(k1,p),B=TangentCP(k2,p);
vector<line>ans; for (int i=0;i<A.size();i++) ans.push_back((line){
A[i],B[i]});
return ans;
}
}
vector<line> TangentinCC(circle k1,circle k2){
int pd=checkposCC(k1,k2); if (pd<=2) return {
};
if (pd==3){
point k=getCC(k1,k2)[0]; return {
(line){
k,k}};}
point p=(k2.o*k1.r+k1.o*k2.r)/(k1.r+k2.r);
vector<point>A=TangentCP(k1,p),B=TangentCP(k2,p);
vector<line>ans; for (int i=0;i<A.size();i++) ans.push_back((line){
A[i],B[i]});
return ans;
}
vector<line> TangentCC(circle k1,circle k2){
int flag=0; if (k1.r<k2.r) swap(k1,k2),flag=1;
vector<line>A=TangentoutCC(k1,k2),B=TangentinCC(k1,k2);
for (line k:B) A.push_back(k);
if (flag) for (line &k:A) swap(k[0],k[1]);
return A;
}
db getarea(circle k1,point k2,point k3){
// 圆 k1 与三角形 k2 k3 k1.o 的有向面积交
point k=k1.o; k1.o=k1.o-k; k2=k2-k; k3=k3-k;
int pd1=k1.inside(k2),pd2=k1.inside(k3);
vector<point>A=getCL(k1,k2,k3);
if (pd1>=0){
if (pd2>=0) return cross(k2,k3)/2;
return k1.r*k1.r*rad(A[1],k3)/2+cross(k2,A[1])/2;
} else if (pd2>=0){
return k1.r*k1.r*rad(k2,A[0])/2+cross(A[0],k3)/2;
}else {
int pd=cmp(k1.r,disSP(k2,k3,k1.o));
if (pd<=0) return k1.r*k1.r*rad(k2,k3)/2;
return cross(A[0],A[1])/2+k1.r*k1.r*(rad(k2,A[0])+rad(A[1],k3))/2;
}
}
circle getcircle(point k1,point k2,point k3){
db a1=k2.x-k1.x,b1=k2.y-k1.y,c1=(a1*a1+b1*b1)/2;
db a2=k3.x-k1.x,b2=k3.y-k1.y,c2=(a2*a2+b2*b2)/2;
db d=a1*b2-a2*b1;
point o=(point){
k1.x+(c1*b2-c2*b1)/d,k1.y+(a1*c2-a2*c1)/d};
return (circle){
o,k1.dis(o)};
}
circle getScircle(vector<point> A){
random_shuffle(A.begin(),A.end());
circle ans=(circle){
A[0],0};
for (int i=1;i<A.size();i++)
if (ans.inside(A[i])==-1){
ans=(circle){
A[i],0};
for (int j=0;j<i;j++)
if (ans.inside(A[j])==-1){
ans.o=(A[i]+A[j])/2; ans.r=ans.o.dis(A[i]);
for (int k=0;k<j;k++)
if (ans.inside(A[k])==-1)
ans=getcircle(A[i],A[j],A[k]);
}
}
return ans;
}
db area(vector<point> A){
// 多边形用 vector<point> 表示 , 逆时针
db ans=0;
for (int i=0;i<A.size();i++) ans+=cross(A[i],A[(i+1)%A.size()]);
return ans/2;
}
int checkconvex(vector<point>A){
int n=A.size(); A.push_back(A[0]); A.push_back(A[1]);
for (int i=0;i<n;i++) if (sign(cross(A[i+1]-A[i],A[i+2]-A[i]))==-1) return 0;
return 1;
}
int contain(vector<point>A,point q){
// 2 内部 1 边界 0 外部
int pd=0; A.push_back(A[0]);
for (int i=1;i<A.size();i++){
point u=A[i-1],v=A[i];
if (onS(u,v,q)) return 1; if (cmp(u.y,v.y)>0) swap(u,v);
if (cmp(u.y,q.y)>=0||cmp(v.y,q.y)<0) continue;
if (sign(cross(u-v,q-v))<0) pd^=1;
}
return pd<<1;
}
vector<point> ConvexHull(vector<point>A,int flag=1){
// flag=0 不严格 flag=1 严格
int n=A.size(); vector<point>ans(n*2);
sort(A.begin(),A.end()); int now=-1;
for (int i=0;i<A.size();i++){
while (now>0&&sign(cross(ans[now]-ans[now-1],A[i]-ans[now-1]))<flag) now--;
ans[++now]=A[i];
} int pre=now;
for (int i=n-2;i>=0;i--){
while (now>pre&&sign(cross(ans[now]-ans[now-1],A[i]-ans[now-1]))<flag) now--;
ans[++now]=A[i];
} ans.resize(now); return ans;
}
db convexDiameter(vector<point>A){
int now=0,n=A.size(); db ans=0;
for (int i=0;i<A.size();i++){
now=max(now,i);
while (1){
db k1=A[i].dis(A[now%n]),k2=A[i].dis(A[(now+1)%n]);
ans=max(ans,max(k1,k2)); if (k2>k1) now++; else break;
}
}
return ans;
}
vector<point> convexcut(vector<point>A,point k1,point k2){
// 保留 k1,k2,p 逆时针的所有点
int n=A.size(); A.push_back(A[0]); vector<point>ans;
for (int i=0;i<n;i++){
int w1=clockwise(k1,k2,A[i]),w2=clockwise(k1,k2,A[i+1]);
if (w1>=0) ans.push_back(A[i]);
if (w1*w2<0) ans.push_back(getLL(k1,k2,A[i],A[i+1]));
}
return ans;
}
int checkPoS(vector<point>A,point k1,point k2){
// 多边形 A 和直线 ( 线段 )k1->k2 严格相交 , 注释部分为线段
struct ins{
point m,u,v;
int operator < (const ins& k) const {
return m<k.m;}
}; vector<ins>B;
//if (contain(A,k1)==2||contain(A,k2)==2) return 1;
vector<point>poly=A; A.push_back(A[0]);
for (int i=1;i<A.size();i++) if (checkLL(A[i-1],A[i],k1,k2)){
point m=getLL(A[i-1],A[i],k1,k2);
if (inmid(A[i-1],A[i],m)/*&&inmid(k1,k2,m)*/) B.push_back((ins){
m,A[i-1],A[i]});
}
if (B.size()==0) return 0; sort(B.begin(),B.end());
int now=1; while (now<B.size()&&B[now].m==B[0].m) now++;
if (now==B.size()) return 0;
int flag=contain(poly,(B[0].m+B[now].m)/2);
if (flag==2) return 1;
point d=B[now].m-B[0].m;
for (int i=now;i<B.size();i++){
if (!(B[i].m==B[i-1].m)&&flag==2) return 1;
int tag=sign(cross(B[i].v-B[i].u,B[i].m+d-B[i].u));
if (B[i].m==B[i].u||B[i].m==B[i].v) flag+=tag; else flag+=tag*2;
}
//return 0;
return flag==2;
}
int checkinp(point r,point l,point m){
if (compareangle(l,r)){
return compareangle(l,m)&&compareangle(m,r);}
return compareangle(l,m)||compareangle(m,r);
}
int checkPosFast(vector<point>A,point k1,point k2){
// 快速检查线段是否和多边形严格相交
if (contain(A,k1)==2||contain(A,k2)==2) return 1; if (k1==k2) return 0;
A.push_back(A[0]); A.push_back(A[1]);
for (int i=1;i+1<A.size();i++)
if (checkLL(A[i-1],A[i],k1,k2)){
point now=getLL(A[i-1],A[i],k1,k2);
if (inmid(A[i-1],A[i],now)==0||inmid(k1,k2,now)==0) continue;
if (now==A[i]){
if (A[i]==k2) continue;
point pre=A[i-1],ne=A[i+1];
if (checkinp(pre-now,ne-now,k2-now)) return 1;
} else if (now==k1){
if (k1==A[i-1]||k1==A[i]) continue;
if (checkinp(A[i-1]-k1,A[i]-k1,k2-k1)) return 1;
} else if (now==k2||now==A[i-1]) continue;
else return 1;
}
return 0;
}
// 拆分凸包成上下凸壳 凸包尽量都随机旋转一个角度来避免出现相同横坐标
// 尽量特判只有一个点的情况 凸包逆时针
void getUDP(vector<point>A,vector<point>&U,vector<point>&D){
db l=1e100,r=-1e100;
for (int i=0;i<A.size();i++) l=min(l,A[i].x),r=max(r,A[i].x);
int wherel,wherer;
for (int i=0;i<A.size();i++) if (cmp(A[i].x,l)==0) wherel=i;
for (int i=A.size();i;i--) if (cmp(A[i-1].x,r)==0) wherer=i-1;
U.clear(); D.clear(); int now=wherel;
while (1){
D.push_back(A[now]); if (now==wherer) break; now++; if (now>=A.size()) now=0;}
now=wherel;
while (1){
U.push_back(A[now]); if (now==wherer) break; now--; if (now<0) now=A.size()-1;}
}
// 需要保证凸包点数大于等于 3,2 内部 ,1 边界 ,0 外部
int containCoP(const vector<point>&U,const vector<point>&D,point k){
db lx=U[0].x,rx=U[U.size()-1].x;
if (k==U[0]||k==U[U.size()-1]) return 1;
if (cmp(k.x,lx)==-1||cmp(k.x,rx)==1) return 0;
int where1=lower_bound(U.begin(),U.end(),(point){
k.x,-1e100})-U.begin();
int where2=lower_bound(D.begin(),D.end(),(point){
k.x,-1e100})-D.begin();
int w1=clockwise(U[where1-1],U[where1],k),w2=clockwise(D[where2-1],D[where2],k);
if (w1==1||w2==-1) return 0; else if (w1==0||w2==0) return 1; return 2;
}
// d 是方向 , 输出上方切点和下方切点
pair<point,point> getTangentCow(const vector<point> &U,const vector<point> &D,point d){
if (sign(d.x)<0||(sign(d.x)==0&&sign(d.y)<0)) d=d*(-1);
point whereU,whereD;
if (sign(d.x)==0) return mp(U[0],U[U.size()-1]);
int l=0,r=U.size()-1,ans=0;
while (l<r){
int mid=l+r>>1; if (sign(cross(U[mid+1]-U[mid],d))<=0) l=mid+1,ans=mid+1; else r=mid;}
whereU=U[ans]; l=0,r=D.size()-1,ans=0;
while (l<r){
int mid=l+r>>1; if (sign(cross(D[mid+1]-D[mid],d))>=0) l=mid+1,ans=mid+1; else r=mid;}
whereD=D[ans]; return mp(whereU,whereD);
}
// 先检查 contain, 逆时针给出
pair<point,point> getTangentCoP(const vector<point>&U,const vector<point>&D,point k){
db lx=U[0].x,rx=U[U.size()-1].x;
if (k.x<lx){
int l=0,r=U.size()-1,ans=U.size()-1;
while (l<r){
int mid=l+r>>1; if (clockwise(k,U[mid],U[mid+1])==1) l=mid+1; else ans=mid,r=mid;}
point w1=U[ans]; l=0,r=D.size()-1,ans=D.size()-1;
while (l<r){
int mid=l+r>>1; if (clockwise(k,D[mid],D[mid+1])==-1) l=mid+1; else ans=mid,r=mid;}
point w2=D[ans]; return mp(w1,w2);
} else if (k.x>rx){
int l=1,r=U.size(),ans=0;
while (l<r){
int mid=l+r>>1; if (clockwise(k,U[mid],U[mid-1])==-1) r=mid; else ans=mid,l=mid+1;}
point w1=U[ans]; l=1,r=D.size(),ans=0;
while (l<r){
int mid=l+r>>1; if (clockwise(k,D[mid],D[mid-1])==1) r=mid; else ans=mid,l=mid+1;}
point w2=D[ans]; return mp(w2,w1);
} else {
int where1=lower_bound(U.begin(),U.end(),(point){
k.x,-1e100})-U.begin();
int where2=lower_bound(D.begin(),D.end(),(point){
k.x,-1e100})-D.begin();
if ((k.x==lx&&k.y>U[0].y)||(where1&&clockwise(U[where1-1],U[where1],k)==1)){
int l=1,r=where1+1,ans=0;
while (l<r){
int mid=l+r>>1; if (clockwise(k,U[mid],U[mid-1])==1) ans=mid,l=mid+1; else r=mid;}
point w1=U[ans]; l=where1,r=U.size()-1,ans=U.size()-1;
while (l<r){
int mid=l+r>>1; if (clockwise(k,U[mid],U[mid+1])==1) l=mid+1; else ans=mid,r=mid;}
point w2=U[ans]; return mp(w2,w1);
} else {
int l=1,r=where2+1,ans=0;
while (l<r){
int mid=l+r>>1; if (clockwise(k,D[mid],D[mid-1])==-1) ans=mid,l=mid+1; else r=mid;}
point w1=D[ans]; l=where2,r=D.size()-1,ans=D.size()-1;
while (l<r){
int mid=l+r>>1; if (clockwise(k,D[mid],D[mid+1])==-1) l=mid+1; else ans=mid,r=mid;}
point w2=D[ans]; return mp(w1,w2);
}
}
}
struct P3{
db x,y,z;
P3 operator + (P3 k1){
return (P3){
x+k1.x,y+k1.y,z+k1.z};}
P3 operator - (P3 k1){
return (P3){
x-k1.x,y-k1.y,z-k1.z};}
P3 operator * (db k1){
return (P3){
x*k1,y*k1,z*k1};}
P3 operator / (db k1){
return (P3){
x/k1,y/k1,z/k1};}
db abs2(){
return x*x+y*y+z*z;}
db abs(){
return sqrt(x*x+y*y+z*z);}
P3 unit(){
return (*this)/abs();}
int operator < (const P3 k1) const{
if (cmp(x,k1.x)!=0) return x<k1.x;
if (cmp(y,k1.y)!=0) return y<k1.y;
return cmp(z,k1.z)==-1;
}
int operator == (const P3 k1){
return cmp(x,k1.x)==0&&cmp(y,k1.y)==0&&cmp(z,k1.z)==0;
}
void scan(){
double k1,k2,k3; scanf("%lf%lf%lf",&k1,&k2,&k3);
x=k1; y=k2; z=k3;
}
};
P3 cross(P3 k1,P3 k2){
return (P3){
k1.y*k2.z-k1.z*k2.y,k1.z*k2.x-k1.x*k2.z,k1.x*k2.y-k1.y*k2.x};}
db dot(P3 k1,P3 k2){
return k1.x*k2.x+k1.y*k2.y+k1.z*k2.z;}
//p=(3,4,5),l=(13,19,21),theta=85 ans=(2.83,4.62,1.77)
P3 turn3D(db k1,P3 l,P3 p){
l=l.unit(); P3 ans; db c=cos(k1),s=sin(k1);
ans.x=p.x*(l.x*l.x*(1-c)+c)+p.y*(l.x*l.y*(1-c)-l.z*s)+p.z*(l.x*l.z*(1-c)+l.y*s);
ans.y=p.x*(l.x*l.y*(1-c)+l.z*s)+p.y*(l.y*l.y*(1-c)+c)+p.z*(l.y*l.z*(1-c)-l.x*s);
ans.z=p.x*(l.x*l.z*(1-c)-l.y*s)+p.y*(l.y*l.z*(1-c)+l.x*s)+p.z*(l.x*l.x*(1-c)+c);
return ans;
}
typedef vector<P3> VP;
typedef vector<VP> VVP;
db Acos(db x){
return acos(max(-(db)1,min(x,(db)1)));}
// 球面距离 , 圆心原点 , 半径 1
db Odist(P3 a,P3 b){
db r=Acos(dot(a,b)); return r;}
db r; P3 rnd;
vector<db> solve(db a,db b,db c){
db r=sqrt(a*a+b*b),th=atan2(b,a);
if (cmp(c,-r)==-1) return {
0};
else if (cmp(r,c)<=0) return {
1};
else {
db tr=pi-Acos(c/r); return {
th+pi-tr,th+pi+tr};
}
}
vector<db> jiao(P3 a,P3 b){
// dot(rd+x*cos(t)+y*sin(t),b) >= cos(r)
if (cmp(Odist(a,b),2*r)>0) return {
0};
P3 rd=a*cos(r),z=a.unit(),y=cross(z,rnd).unit(),x=cross(y,z).unit();
vector<db> ret = solve(-(dot(x,b)*sin(r)),-(dot(y,b)*sin(r)),-(cos(r)-dot(rd,b)));
return ret;
}
db norm(db x,db l=0,db r=2*pi){
// change x into [l,r)
while (cmp(x,l)==-1) x+=(r-l); while (cmp(x,r)>=0) x-=(r-l);
return x;
}
db disLP(P3 k1,P3 k2,P3 q){
return (cross(k2-k1,q-k1)).abs()/(k2-k1).abs();
}
db disLL(P3 k1,P3 k2,P3 k3,P3 k4){
P3 dir=cross(k2-k1,k4-k3); if (sign(dir.abs())==0) return disLP(k1,k2,k3);
return fabs(dot(dir.unit(),k1-k2));
}
VP getFL(P3 p,P3 dir,P3 k1,P3 k2){
db a=dot(k2-p,dir),b=dot(k1-p,dir),d=a-b;
if (sign(fabs(d))==0) return {
};
return {
(k1*a-k2*b)/d};
}
VP getFF(P3 p1,P3 dir1,P3 p2,P3 dir2){
// 返回一条线
P3 e=cross(dir1,dir2),v=cross(dir1,e);
db d=dot(dir2,v); if (sign(abs(d))==0) return {
};
P3 q=p1+v*dot(dir2,p2-p1)/d; return {
q,q+e};
}
// 3D Covex Hull Template
db getV(P3 k1,P3 k2,P3 k3,P3 k4){
// get the Volume
return dot(cross(k2-k1,k3-k1),k4-k1);
}
db rand_db(){
return 1.0*rand()/RAND_MAX;}
VP convexHull2D(VP A,P3 dir){
P3 x={
(db)rand(),(db)rand(),(db)rand()}; x=x.unit();
x=cross(x,dir).unit(); P3 y=cross(x,dir).unit();
P3 vec=dir.unit()*dot(A[0],dir);
vector<point>B;
for (int i=0;i<A.size();i++) B.push_back((point){
dot(A[i],x),dot(A[i],y)});
B=ConvexHull(B); A.clear();
for (int i=0;i<B.size();i++) A.push_back(x*B[i].x+y*B[i].y+vec);
return A;
}
namespace CH3{
VVP ret; set<pair<int,int> >e;
int n; VP p,q;
void wrap(int a,int b){
if (e.find({
a,b})==e.end()){
int c=-1;
for (int i=0;i<n;i++) if (i!=a&&i!=b){
if (c==-1||sign(getV(q[c],q[a],q[b],q[i]))>0) c=i;
}
if (c!=-1){
ret.push_back({
p[a],p[b],p[c]});
e.insert({
a,b}); e.insert({
b,c}); e.insert({
c,a});
wrap(c,b); wrap(a,c);
}
}
}
VVP ConvexHull3D(VP _p){
p=q=_p; n=p.size();
ret.clear(); e.clear();
for (auto &i:q) i=i+(P3){
rand_db()*1e-4,rand_db()*1e-4,rand_db()*1e-4};
for (int i=1;i<n;i++) if (q[i].x<q[0].x) swap(p[0],p[i]),swap(q[0],q[i]);
for (int i=2;i<n;i++) if ((q[i].x-q[0].x)*(q[1].y-q[0].y)>(q[i].y-q[0].y)*(q[1].x-q[0].x)) swap(q[1],q[i]),swap(p[1],p[i]);
wrap(0,1);
return ret;
}
}
VVP reduceCH(VVP A){
VVP ret; map<P3,VP> M;
for (VP nowF:A){
P3 dir=cross(nowF[1]-nowF[0],nowF[2]-nowF[0]).unit();
for (P3 k1:nowF) M[dir].pb(k1);
}
for (pair<P3,VP> nowF:M) ret.pb(convexHull2D(nowF.se,nowF.fi));
return ret;
}
// 把一个面变成 ( 点 , 法向量 ) 的形式
pair<P3,P3> getF(VP F){
return mp(F[0],cross(F[1]-F[0],F[2]-F[0]).unit());
}
// 3D Cut 保留 dot(dir,x-p)>=0 的部分
VVP ConvexCut3D(VVP A,P3 p,P3 dir){
VVP ret; VP sec;
for (VP nowF: A){
int n=nowF.size(); VP ans; int dif=0;
for (int i=0;i<n;i++){
int d1=sign(dot(dir,nowF[i]-p));
int d2=sign(dot(dir,nowF[(i+1)%n]-p));
if (d1>=0) ans.pb(nowF[i]);
if (d1*d2<0){
P3 q=getFL(p,dir,nowF[i],nowF[(i+1)%n])[0];
ans.push_back(q); sec.push_back(q);
}
if (d1==0) sec.push_back(nowF[i]); else dif=1;
dif|=(sign(dot(dir,cross(nowF[(i+1)%n]-nowF[i],nowF[(i+1)%n]-nowF[i])))==-1);
}
if (ans.size()>0&&dif) ret.push_back(ans);
}
if (sec.size()>0) ret.push_back(convexHull2D(sec,dir));
return ret;
}
db vol(VVP A){
if (A.size()==0) return 0; P3 p=A[0][0]; db ans=0;
for (VP nowF:A)
for (int i=2;i<nowF.size();i++)
ans+=abs(getV(p,nowF[0],nowF[i-1],nowF[i]));
return ans/6;
}
VVP init(db INF) {
VVP pss(6,VP(4));
pss[0][0] = pss[1][0] = pss[2][0] = {
-INF, -INF, -INF};
pss[0][3] = pss[1][1] = pss[5][2] = {
-INF, -INF, INF};
pss[0][1] = pss[2][3] = pss[4][2] = {
-INF, INF, -INF};
pss[0][2] = pss[5][3] = pss[4][1] = {
-INF, INF, INF};
pss[1][3] = pss[2][1] = pss[3][2] = {
INF, -INF, -INF};
pss[1][2] = pss[5][1] = pss[3][3] = {
INF, -INF, INF};
pss[2][2] = pss[4][3] = pss[3][1] = {
INF, INF, -INF};
pss[5][0] = pss[4][0] = pss[3][0] = {
INF, INF, INF};
return pss;
}