数据太弱,错误判断都能过。。
if(cnt[0]+cnt[1]==0)
break;
A
:
先考虑是一道数学题,对于某一位上D
题一致。
注意oj数据后带无效空格?回车,单纯getchar
判断会报WA
LL n, k, c[N][N], mark = 2;
LL quikpower(int b)
{
LL ans = 1, base = 2;
while (b > 0)
{
if (b & 1)
{
ans *= base;
ans %= p;
}
base *= base;
base %= p;
b >>= 1;
}
if (ans == 0)
return p - 1;
else
return ans - 1;
}
int main()
{
//IN;OUT;
ios::sync_with_stdio(false);
cin.tie(0);
c[0][0] = c[1][1] = c[1][0] = 1;
while (scanf("%lld%lld", &n, &k) == 2)
{
f(i, mark, n)
{
c[i][i] = c[i][0] = 1;
for (int j = 1; j < i; j++)
{
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % p;
}
}
mark = mark < n ? n : mark;
cout << quikpower(n) * c[n - 1][k - 1] % p << '\n';
}
return 0;
}
B
:
考虑异或的性质,我们先求出两个数组每一位上
求出每一位上的异或值再乘以基数
最后累加即可
const LL N = 1e5 + 86,p=1e9+7;
LL n, m, a[N], b[N], cnt[2],ans,base=1;
int main()
{
//IN;OUT;
n = io.xint();
m = io.xint();
f(i, 1, n) a[i] = io.xint();
f(i, 1, m) b[i] = io.xint();
f(k, 1, 31)
{
cnt[0]=cnt[1]=0;
f(i, 1, n)
{
if (a[i] & 1)
cnt[0]+=1;
a[i]>>=1;
}
f(i,1,m){
if(b[i]&1)
cnt[1]+=1;
b[i]>>=1;
}
/*if(cnt[0]+cnt[1]==0)
break;*/
ans+=base*((cnt[0]*(m-cnt[1])+cnt[1]*(n-cnt[0]))%p)%p;
ans%=p;
base<<=1;
base%=p;
}
io.wll(ans);
return 0;
}
C
:
列几个情况贪心即可
LL n,x,y,res=0,lx,ly;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>lx>>ly;
f(sb,2,n){
cin>>x>>y;
res+=abs(x-lx)<abs(y-ly)?abs(y-ly):abs(x-lx);
lx=x,ly=y;
}
cout<<res;
return 0;
}
D
:
先预处理出结果用bitset储存,然后直接判断,辣鸡1
也是YES
bitset<100009> vis;
int main()
{
//IN;OUT;
ios::sync_with_stdio(false);
cin.tie(0);
vis.reset();
vis[1]=1;
for (int k = 2; k <= 100000; k++)
{
LL temp =k;
while(temp*k<=100000){
temp*=k;
vis[temp]=1;
}
}
while (1)
{
LL n;
cin >> n;
if(n==0)break;
if (vis[n])
cout << "YES\n";
else
cout << "NO\n";
}
return 0;
}
E
不会,老是WA
F
:
二维前缀和模版
const LL N = 1e3 + 86;
LL n, m, s[N][N],temp;
inline LL getsum(int x1, int y1, int x2, int y2)
{
return s[x2][y2] + s[x1 - 1][y1 - 1] - s[x1 - 1][y2] - s[x2][y1 - 1];
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m;
f(k, 1, n)
{
f(j, 1, m)
{
cin>>temp;
s[k][j] = s[k - 1][j] + s[k][j - 1] - s[k - 1][j - 1] + temp;
}
}
f(i,1,n){
f(j,1,m){
cout<<getsum(1,1,i,j)<<(j==m?"":" ");
}
cout<<(i==n?"":"\n");
}
return 0;
}
G
:
按题意搞即可,可采用位操作优化
LL cnt=0;
char c;
int main()
{
//IN;OUT;
ios::sync_with_stdio(false);
cin.tie(0);
while(~(c=getchar())){
while(c>0){
if(c&1)
cnt+=1;
c>>=1;
}
}
cout<<(cnt&1);
return 0;
}